Перевод: с английского на все языки

со всех языков на английский

empirically (other)

  • 1 empirically

    adv эмпирически, опытным путём, на основе опыта
    Синонимический ряд:
    experientially (other) experientially; experimentally

    English-Russian base dictionary > empirically

  • 2 experimentally

    1. adv опытным путём; с помощью, на основании опыта; экспериментально
    2. adv в качестве опыта; для пробы
    Синонимический ряд:
    1. on a trial basis (adj.) for a trial period; on a trial basis; on approval; on probation; on trial; tentative
    2. empirically (other) empirically; experientially

    English-Russian base dictionary > experimentally

  • 3 Language

       Philosophy is written in that great book, the universe, which is always open, right before our eyes. But one cannot understand this book without first learning to understand the language and to know the characters in which it is written. It is written in the language of mathematics, and the characters are triangles, circles, and other figures. Without these, one cannot understand a single word of it, and just wanders in a dark labyrinth. (Galileo, 1990, p. 232)
       It never happens that it [a nonhuman animal] arranges its speech in various ways in order to reply appropriately to everything that may be said in its presence, as even the lowest type of man can do. (Descartes, 1970a, p. 116)
       It is a very remarkable fact that there are none so depraved and stupid, without even excepting idiots, that they cannot arrange different words together, forming of them a statement by which they make known their thoughts; while, on the other hand, there is no other animal, however perfect and fortunately circumstanced it may be, which can do the same. (Descartes, 1967, p. 116)
       Human beings do not live in the object world alone, nor alone in the world of social activity as ordinarily understood, but are very much at the mercy of the particular language which has become the medium of expression for their society. It is quite an illusion to imagine that one adjusts to reality essentially without the use of language and that language is merely an incidental means of solving specific problems of communication or reflection. The fact of the matter is that the "real world" is to a large extent unconsciously built on the language habits of the group.... We see and hear and otherwise experience very largely as we do because the language habits of our community predispose certain choices of interpretation. (Sapir, 1921, p. 75)
       It powerfully conditions all our thinking about social problems and processes.... No two languages are ever sufficiently similar to be considered as representing the same social reality. The worlds in which different societies live are distinct worlds, not merely the same worlds with different labels attached. (Sapir, 1985, p. 162)
       [A list of language games, not meant to be exhaustive:]
       Giving orders, and obeying them- Describing the appearance of an object, or giving its measurements- Constructing an object from a description (a drawing)Reporting an eventSpeculating about an eventForming and testing a hypothesisPresenting the results of an experiment in tables and diagramsMaking up a story; and reading itPlay actingSinging catchesGuessing riddlesMaking a joke; and telling it
       Solving a problem in practical arithmeticTranslating from one language into another
       LANGUAGE Asking, thanking, cursing, greeting, and praying-. (Wittgenstein, 1953, Pt. I, No. 23, pp. 11 e-12 e)
       We dissect nature along lines laid down by our native languages.... The world is presented in a kaleidoscopic flux of impressions which has to be organized by our minds-and this means largely by the linguistic systems in our minds.... No individual is free to describe nature with absolute impartiality but is constrained to certain modes of interpretation even while he thinks himself most free. (Whorf, 1956, pp. 153, 213-214)
       We dissect nature along the lines laid down by our native languages.
       The categories and types that we isolate from the world of phenomena we do not find there because they stare every observer in the face; on the contrary, the world is presented in a kaleidoscopic flux of impressions which has to be organized by our minds-and this means largely by the linguistic systems in our minds.... We are thus introduced to a new principle of relativity, which holds that all observers are not led by the same physical evidence to the same picture of the universe, unless their linguistic backgrounds are similar or can in some way be calibrated. (Whorf, 1956, pp. 213-214)
       9) The Forms of a Person's Thoughts Are Controlled by Unperceived Patterns of His Own Language
       The forms of a person's thoughts are controlled by inexorable laws of pattern of which he is unconscious. These patterns are the unperceived intricate systematizations of his own language-shown readily enough by a candid comparison and contrast with other languages, especially those of a different linguistic family. (Whorf, 1956, p. 252)
       It has come to be commonly held that many utterances which look like statements are either not intended at all, or only intended in part, to record or impart straightforward information about the facts.... Many traditional philosophical perplexities have arisen through a mistake-the mistake of taking as straightforward statements of fact utterances which are either (in interesting non-grammatical ways) nonsensical or else intended as something quite different. (Austin, 1962, pp. 2-3)
       In general, one might define a complex of semantic components connected by logical constants as a concept. The dictionary of a language is then a system of concepts in which a phonological form and certain syntactic and morphological characteristics are assigned to each concept. This system of concepts is structured by several types of relations. It is supplemented, furthermore, by redundancy or implicational rules..., representing general properties of the whole system of concepts.... At least a relevant part of these general rules is not bound to particular languages, but represents presumably universal structures of natural languages. They are not learned, but are rather a part of the human ability to acquire an arbitrary natural language. (Bierwisch, 1970, pp. 171-172)
       In studying the evolution of mind, we cannot guess to what extent there are physically possible alternatives to, say, transformational generative grammar, for an organism meeting certain other physical conditions characteristic of humans. Conceivably, there are none-or very few-in which case talk about evolution of the language capacity is beside the point. (Chomsky, 1972, p. 98)
       [It is] truth value rather than syntactic well-formedness that chiefly governs explicit verbal reinforcement by parents-which renders mildly paradoxical the fact that the usual product of such a training schedule is an adult whose speech is highly grammatical but not notably truthful. (R. O. Brown, 1973, p. 330)
       he conceptual base is responsible for formally representing the concepts underlying an utterance.... A given word in a language may or may not have one or more concepts underlying it.... On the sentential level, the utterances of a given language are encoded within a syntactic structure of that language. The basic construction of the sentential level is the sentence.
       The next highest level... is the conceptual level. We call the basic construction of this level the conceptualization. A conceptualization consists of concepts and certain relations among those concepts. We can consider that both levels exist at the same point in time and that for any unit on one level, some corresponding realizate exists on the other level. This realizate may be null or extremely complex.... Conceptualizations may relate to other conceptualizations by nesting or other specified relationships. (Schank, 1973, pp. 191-192)
       The mathematics of multi-dimensional interactive spaces and lattices, the projection of "computer behavior" on to possible models of cerebral functions, the theoretical and mechanical investigation of artificial intelligence, are producing a stream of sophisticated, often suggestive ideas.
       But it is, I believe, fair to say that nothing put forward until now in either theoretic design or mechanical mimicry comes even remotely in reach of the most rudimentary linguistic realities. (Steiner, 1975, p. 284)
       The step from the simple tool to the master tool, a tool to make tools (what we would now call a machine tool), seems to me indeed to parallel the final step to human language, which I call reconstitution. It expresses in a practical and social context the same understanding of hierarchy, and shows the same analysis by function as a basis for synthesis. (Bronowski, 1977, pp. 127-128)
        t is the language donn eґ in which we conduct our lives.... We have no other. And the danger is that formal linguistic models, in their loosely argued analogy with the axiomatic structure of the mathematical sciences, may block perception.... It is quite conceivable that, in language, continuous induction from simple, elemental units to more complex, realistic forms is not justified. The extent and formal "undecidability" of context-and every linguistic particle above the level of the phoneme is context-bound-may make it impossible, except in the most abstract, meta-linguistic sense, to pass from "pro-verbs," "kernals," or "deep deep structures" to actual speech. (Steiner, 1975, pp. 111-113)
       A higher-level formal language is an abstract machine. (Weizenbaum, 1976, p. 113)
       Jakobson sees metaphor and metonymy as the characteristic modes of binarily opposed polarities which between them underpin the two-fold process of selection and combination by which linguistic signs are formed.... Thus messages are constructed, as Saussure said, by a combination of a "horizontal" movement, which combines words together, and a "vertical" movement, which selects the particular words from the available inventory or "inner storehouse" of the language. The combinative (or syntagmatic) process manifests itself in contiguity (one word being placed next to another) and its mode is metonymic. The selective (or associative) process manifests itself in similarity (one word or concept being "like" another) and its mode is metaphoric. The "opposition" of metaphor and metonymy therefore may be said to represent in effect the essence of the total opposition between the synchronic mode of language (its immediate, coexistent, "vertical" relationships) and its diachronic mode (its sequential, successive, lineal progressive relationships). (Hawkes, 1977, pp. 77-78)
       It is striking that the layered structure that man has given to language constantly reappears in his analyses of nature. (Bronowski, 1977, p. 121)
       First, [an ideal intertheoretic reduction] provides us with a set of rules"correspondence rules" or "bridge laws," as the standard vernacular has it-which effect a mapping of the terms of the old theory (T o) onto a subset of the expressions of the new or reducing theory (T n). These rules guide the application of those selected expressions of T n in the following way: we are free to make singular applications of their correspondencerule doppelgangers in T o....
       Second, and equally important, a successful reduction ideally has the outcome that, under the term mapping effected by the correspondence rules, the central principles of T o (those of semantic and systematic importance) are mapped onto general sentences of T n that are theorems of Tn. (P. Churchland, 1979, p. 81)
       If non-linguistic factors must be included in grammar: beliefs, attitudes, etc. [this would] amount to a rejection of the initial idealization of language as an object of study. A priori such a move cannot be ruled out, but it must be empirically motivated. If it proves to be correct, I would conclude that language is a chaos that is not worth studying.... Note that the question is not whether beliefs or attitudes, and so on, play a role in linguistic behavior and linguistic judgments... [but rather] whether distinct cognitive structures can be identified, which interact in the real use of language and linguistic judgments, the grammatical system being one of these. (Chomsky, 1979, pp. 140, 152-153)
        23) Language Is Inevitably Influenced by Specific Contexts of Human Interaction
       Language cannot be studied in isolation from the investigation of "rationality." It cannot afford to neglect our everyday assumptions concerning the total behavior of a reasonable person.... An integrational linguistics must recognize that human beings inhabit a communicational space which is not neatly compartmentalized into language and nonlanguage.... It renounces in advance the possibility of setting up systems of forms and meanings which will "account for" a central core of linguistic behavior irrespective of the situation and communicational purposes involved. (Harris, 1981, p. 165)
       By innate [linguistic knowledge], Chomsky simply means "genetically programmed." He does not literally think that children are born with language in their heads ready to be spoken. He merely claims that a "blueprint is there, which is brought into use when the child reaches a certain point in her general development. With the help of this blueprint, she analyzes the language she hears around her more readily than she would if she were totally unprepared for the strange gabbling sounds which emerge from human mouths. (Aitchison, 1987, p. 31)
       Looking at ourselves from the computer viewpoint, we cannot avoid seeing that natural language is our most important "programming language." This means that a vast portion of our knowledge and activity is, for us, best communicated and understood in our natural language.... One could say that natural language was our first great original artifact and, since, as we increasingly realize, languages are machines, so natural language, with our brains to run it, was our primal invention of the universal computer. One could say this except for the sneaking suspicion that language isn't something we invented but something we became, not something we constructed but something in which we created, and recreated, ourselves. (Leiber, 1991, p. 8)

    Historical dictionary of quotations in cognitive science > Language

  • 4 Consciousness

       Consciousness is what makes the mind-body problem really intractable.
    ... Without consciousness the mind-body problem would be much less interesting. With consciousness it seems hopeless. (T. Nagel, 1979, pp. 165-166)
       This approach to understanding sensory qualia is both theoretically and empirically motivated... [;] it suggests an effective means of expressing the allegedly inexpressible. The "ineffable" pink of one's current visual sensation may be richly and precisely expressed as a 95Hz/80Hz/80Hz "chord" in the relevant triune cortical system. The "unconveyable" taste sensation produced by the fabled Australian health tonic Vegamite might be poignantly conveyed as a 85/80/90/15 "chord" in one's four channeled gustatory system.... And the "indescribably" olfactory sensation produced by a newly opened rose might be quite accurately described as a 95/35/10/80/60/55 "chord" in some six-dimensional space within one's olfactory bulb. (P. M. Churchland, 1989, p. 106)
       One of philosophy's favorite facets of mentality has received scant attention from cognitive psychologists, and that is consciousness itself: fullblown, introspective, inner-world phenomenological consciousness. In fact if one looks in the obvious places... one finds not so much a lack of interest as a deliberate and adroit avoidance of the issue. I think I know why. Consciousness appears to be the last bastion of occult properties, epiphenomena, and immeasurable subjective states-in short, the one area of mind best left to the philosophers, who are welcome to it. Let them make fools of themselves trying to corral the quicksilver of "phenomenology" into a respectable theory. (Dennett, 1978b, p. 149)
       When I am thinking about anything, my consciousness consists of a number of ideas.... But every idea can be resolved into elements... and these elements are sensations. (Titchener, 1910, p. 33)
       A Darwin machine now provides a framework for thinking about thought, indeed one that may be a reasonable first approximation to the actual brain machinery underlying thought. An intracerebral Darwin Machine need not try out one sequence at a time against memory; it may be able to try out dozens, if not hundreds, simultaneously, shape up new generations in milliseconds, and thus initiate insightful actions without overt trial and error. This massively parallel selection among stochastic sequences is more analogous to the ways of darwinian biology than to the "von Neumann" serial computer. Which is why I call it a Darwin Machine instead; it shapes up thoughts in milliseconds rather than millennia, and uses innocuous remembered environments rather than noxious real-life ones. It may well create the uniquely human aspect of our consciousness. (Calvin, 1990, pp. 261-262)
       To suppose the mind to exist in two different states, in the same moment, is a manifest absurdity. To the whole series of states of the mind, then, whatever the individual, momentary successive states may be, I give the name of our consciousness.... There are not sensations, thoughts, passions, and also consciousness, any more than there is quadruped or animal, as a separate being to be added to the wolves, tygers, elephants, and other living creatures.... The fallacy of conceiving consciousness to be something different from the feeling, which is said to be its object, has arisen, in a great measure, from the use of the personal pronoun I. (T. Brown, 1970, p. 336)
       The human capacity for speech is certainly unique. But the gulf between it and the behavior of animals no longer seems unbridgeable.... What does this leave us with, then, which is characteristically human?.... t resides in the human capacity for consciousness and self-consciousness. (Rose, 1976, p. 177)
       [Human consciousness] depends wholly on our seeing the outside world in such categories. And the problems of consciousness arise from putting reconstitution beside internalization, from our also being able to see ourselves as if we were objects in the outside world. That is in the very nature of language; it is impossible to have a symbolic system without it.... The Cartesian dualism between mind and body arises directly from this, and so do all the famous paradoxes, both in mathematics and in linguistics.... (Bronowski, 1978, pp. 38-39)
       It seems to me that there are at least four different viewpoints-or extremes of viewpoint-that one may reasonably hold on the matter [of computation and conscious thinking]:
       A. All thinking is computation; in particular, feelings of conscious awareness are evoked merely by the carrying out of appropriate computations.
       B. Awareness is a feature of the brain's physical action; and whereas any physical action can be simulated computationally, computational simulation cannot by itself evoke awareness.
       C. Appropriate physical action of the brain evokes awareness, but this physical action cannot even be properly simulated computationally.
       D. Awareness cannot be explained by physical, computational, or any other scientific terms. (Penrose, 1994, p. 12)

    Historical dictionary of quotations in cognitive science > Consciousness

  • 5 Huygens, Christiaan

    SUBJECT AREA: Horology
    [br]
    b. 14 April 1629 The Hague, the Netherlands
    d. 8 June 1695 The Hague, the Netherlands
    [br]
    Dutch scientist who was responsible for two of the greatest advances in horology: the successful application of both the pendulum to the clock and the balance spring to the watch.
    [br]
    Huygens was born into a cultured and privileged class. His father, Constantijn, was a poet and statesman who had wide interests. Constantijn exerted a strong influence on his son, who was educated at home until he reached the age of 16. Christiaan studied law and mathematics at Ley den University from 1645 to 1647, and continued his studies at the Collegium Arausiacum in Breda until 1649. He then lived at The Hague, where he had the means to devote his time entirely to study. In 1666 he became a Member of the Académie des Sciences in Paris and settled there until his return to The Hague in 1681. He also had a close relationship with the Royal Society and visited London on three occasions, meeting Newton on his last visit in 1689. Huygens had a wide range of interests and made significant contributions in mathematics, astronomy, optics and mechanics. He also made technical advances in optical instruments and horology.
    Despite the efforts of Burgi there had been no significant improvement in the performance of ordinary clocks and watches from their inception to Huygens's time, as they were controlled by foliots or balances which had no natural period of oscillation. The pendulum appeared to offer a means of improvement as it had a natural period of oscillation that was almost independent of amplitude. Galileo Galilei had already pioneered the use of a freely suspended pendulum for timing events, but it was by no means obvious how it could be kept swinging and used to control a clock. Towards the end of his life Galileo described such a. mechanism to his son Vincenzio, who constructed a model after his father's death, although it was not completed when he himself died in 1642. This model appears to have been copied in Italy, but it had little influence on horology, partly because of the circumstances in which it was produced and possibly also because it differed radically from clocks of that period. The crucial event occurred on Christmas Day 1656 when Huygens, quite independently, succeeded in adapting an existing spring-driven table clock so that it was not only controlled by a pendulum but also kept it swinging. In the following year he was granted a privilege or patent for this clock, and several were made by the clockmaker Salomon Coster of The Hague. The use of the pendulum produced a dramatic improvement in timekeeping, reducing the daily error from minutes to seconds, but Huygens was aware that the pendulum was not truly isochronous. This error was magnified by the use of the existing verge escapement, which made the pendulum swing through a large arc. He overcame this defect very elegantly by fitting cheeks at the pendulum suspension point, progressively reducing the effective length of the pendulum as the amplitude increased. Initially the cheeks were shaped empirically, but he was later able to show that they should have a cycloidal shape. The cheeks were not adopted universally because they introduced other defects, and the problem was eventually solved more prosaically by way of new escapements which reduced the swing of the pendulum. Huygens's clocks had another innovatory feature: maintaining power, which kept the clock going while it was being wound.
    Pendulums could not be used for portable timepieces, which continued to use balances despite their deficiencies. Robert Hooke was probably the first to apply a spring to the balance, but his efforts were not successful. From his work on the pendulum Huygens was well aware of the conditions necessary for isochronism in a vibrating system, and in January 1675, with a flash of inspiration, he realized that this could be achieved by controlling the oscillations of the balance with a spiral spring, an arrangement that is still used in mechanical watches. The first model was made for Huygens in Paris by the clockmaker Isaac Thuret, who attempted to appropriate the invention and patent it himself. Huygens had for many years been trying unsuccessfully to adapt the pendulum clock for use at sea (in order to determine longitude), and he hoped that a balance-spring timekeeper might be better suited for this purpose. However, he was disillusioned as its timekeeping proved to be much more susceptible to changes in temperature than that of the pendulum clock.
    [br]
    Principal Honours and Distinctions
    FRS 1663. Member of the Académie Royale des Sciences 1666.
    Bibliography
    For his complete works, see Oeuvres complètes de Christian Huygens, 1888–1950, 22 vols, The Hague.
    1658, Horologium, The Hague; repub., 1970, trans. E.L.Edwardes, Antiquarian
    Horology 7:35–55 (describes the pendulum clock).
    1673, Horologium Oscillatorium, Paris; repub., 1986, The Pendulum Clock or Demonstrations Concerning the Motion ofPendula as Applied to Clocks, trans.
    R.J.Blackwell, Ames.
    Further Reading
    H.J.M.Bos, 1972, Dictionary of Scientific Biography, ed. C.C.Gillispie, Vol. 6, New York, pp. 597–613 (for a fuller account of his life and scientific work, but note the incorrect date of his death).
    R.Plomp, 1979, Spring-Driven Dutch Pendulum Clocks, 1657–1710, Schiedam (describes Huygens's application of the pendulum to the clock).
    S.A.Bedini, 1991, The Pulse of Time, Florence (describes Galileo's contribution of the pendulum to the clock).
    J.H.Leopold, 1982, "L"Invention par Christiaan Huygens du ressort spiral réglant pour les montres', Huygens et la France, Paris, pp. 154–7 (describes the application of the balance spring to the watch).
    A.R.Hall, 1978, "Horology and criticism", Studia Copernica 16:261–81 (discusses Hooke's contribution).
    DV

    Biographical history of technology > Huygens, Christiaan

См. также в других словарях:

  • Outworld (band) — other uses|Outworld (disambiguation)Infobox musical artist Name = Outworld |200px|thumb Img capt = (L R) Bobby Williamson, Kelly Carpenter, Matt Mckenna, Rusty Cooley, Shawn Kascak Img size = Background = group or band Origin = Houston, Texas,… …   Wikipedia

  • Metaphysical naturalism — This article is about the worldview. For the methodological paradigm, see Methodological naturalism. Part of a series on Irreligion …   Wikipedia

  • Hellenistic biological sciences — R.J.Kankinson The five centuries that separate Aristotle’s death in 322 BC from Galen’s ascendancy in Rome in the latter part of the second century AD were fertile ones for the biological sciences, in particular medicine. Nor is the period solely …   History of philosophy

  • Law of value — The law of value is a concept in Karl Marx s critique of political economy. Most generally, it refers to a regulative principle of the economic exchange of the products of human work: the relative exchange values of those products in trade,… …   Wikipedia

  • Leibniz (from) to Kant — From Leibniz to Kant Lewis White Beck INTRODUCTION Had Kant not lived, German philosophy between the death of Leibniz in 1716 and the end of the eighteenth century would have little interest for us, and would remain largely unknown. In Germany… …   History of philosophy

  • nature, philosophy of — Introduction       the discipline that investigates substantive issues regarding the actual features of nature as a reality. The discussion here is divided into two parts: the philosophy of physics and the philosophy of biology.       In this… …   Universalium

  • Psychology — (from Greek gr. ψῡχή, psȳkhē , breath, life, soul ; and gr. λογία, logia ) is an academic and applied discipline involving the scientific study of mental processes and behavior. Psychologists study such phenomena as perception, cognition, emotion …   Wikipedia

  • positivism — positivist, adj., n. positivistic, adj. positivistically, adv. /poz i teuh viz euhm/, n. 1. the state or quality of being positive; definiteness; assurance. 2. a philosophical system founded by Auguste Comte, concerned with positive facts and… …   Universalium

  • Self-refuting idea — Self refuting ideas are ideas or statements whose falsehood is a logical consequence of the act or situation of holding them to be true. Many ideas are accused by their detractors of being self refuting, and such accusations are therefore almost… …   Wikipedia

  • CRYPTREC — is the Cryptography Research and Evaluation Committee set up by the Japanese Government to evaluate and recommend cryptographic techniques for government and industrial use. It is comparable in many respects to the European Union s NESSIE project …   Wikipedia

  • religion, study of — Introduction       attempt to understand the various aspects of religion, especially through the use of other intellectual disciplines.       The history of mankind has shown the pervasive influences of religion, and thus the study of religion,… …   Universalium

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»